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SUMMARY 
An efficient computer programme called GRID2D/3D has been developed to generate single and composite 
grid systems within geometrically complex two- and three-dimensional (2D and 3D) spatial domains that 
can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation 
methods based on transfinite interpolation. The distribution of grid points within the spatial domain is 
controlled by stretching functions and grid lines can intersect boundaries of the spatial domain ortho- 
gonally. GRID2D/3D generates composite grid systems by patching together two or more single grid 
systems. The patching can be discontinuous or continuous. For 2D spatial domains the boundary curves are 
constructed by using either cubic or tension spline interpolation. For 3D spatial domains the boundary 
surfaces are constructed by using a new technique, developed in this study, referred to as 3D bidirectional 
Hermite interpolation. 
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INTRODUCTION 

Finite difference (FD) and finite volume (FV) methods are very powerful techniques for obtaining 
solutions to partial differential equations that govern fluid flow problems. However, in order to 
use these methods, it is necessary to replace the spatial domain of the problem being studied by a 
finite number of discrete points known as grid points. The process of replacing a spatial domain 
by a system of grid points is referred to as grid generation. Grid generation is a very important 
part of FD and FV methods because the system of grid points used strongly affects the accuracy, 
efficiency and ease with which these methods generate solutions. In some instances the ability or 
inability to generate an ‘acceptable’ grid system determines whether FD or FV methods can or 
cannot be used. 

Even though tremendous advances have been made in grid generation techniques during the 
past 15 years,’ - l o  the generation of acceptable grid systems for geometrically complex three- 
dimensional spatial domains remains a difficult problem. Recently, a very efficient and versatile 
computer programme called GRID2D/3D has been developed which can generate grid systems 
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inside complex-shaped two- and three-dimensional (2D and 3D) spatial domains. GRID2D/3D is 
so efficient that it is configured to run on PCs or PC-compatible computers, though it can also be 
used on workstations and mainframes. The high efficiency of GRID2D/3D makes it especially 
useful for spatial domains that deform with time. This is because for such spatial domains a 
different grid system must be generated at each time level and the number of time levels can be 
thousands or more. This paper describes GRID2D/3D. 

The outline of the paper is as follows. First the various types of grid systems that can be 
generated by GRID2D/3D are described along with their advantages and disadvantages. 
Afterwards the methods used in GRID2D/3D to generate grid systems are presented. Then a 
discussion is given of methods for generating parametric representations of 2D and 3D bound- 
aries. Finally several examples of grid systems generated by GRID2D/3D are presented. 

TYPES OF GRID SYSTEMS 

Eiseman and Erlebacherg classified all possible grid systems that can be used by FD and FV 
methods as follows. At the broadest level a grid system can be classified as structured, un- 
structured or mixed, depending upon how the grid points are connected to each other (Figure 1). 
A structured grid system in turn can be classified as a single grid or a composite grid. A single grid 
is one that is based on a single boundary-fitted co-ordinate system, whereas a composite grid is 
made up of two or more single grids patched together with each single grid having a different 
boundary-fitted co-ordinate system. Depending upon how the different single grids are patched 
together, a composite grid can further be classified as completely discontinuous, partially 
discontinuous, partially continuous or completely continuous (Figure 2). The continuity or 
discontinuity referred to here is concerned with that of the different boundary-fitted co-ordinate 
systems at locations where they are patched together in a composite grid. 

Of the grid systems mentioned above, the unstructured grid system is the most versatile and the 
easiest to generate, especially for complicated-shaped spatial domains. However, the use of 

Figure 1. Types of grid systems: (a) structured; (b) unstructured; (c) mixed 
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Figure 2. Types of composite grids: (a) completely discontinuous; (b) partially discontinuous; (c) partially continuous; 
(d) partially or completely continuous 

unstructured grid systems with FD and FV methods is still at a state of 
Presently, FD and FV methods almost exclusively use structured grid systems, and those are the 
ones that GRID2D/3D generates. 

When a structured grid system is used with an FD or FV method to obtain solutions to fluid 
flow problems, the structured grid system generated by GRIDZD/3D or any other computer 
programme should satisfy a number of conditions. 

The total number of grid points in the grid system should be kept to the minimum needed 
for the FD or FV method to yield solutions of the desired accuracy. This condition is 
important for computational efficiency and can be achieved by clustering grid points in 
regions where they are needed (e.g. regions where gradients of the flow are large) and 
scattering them elsewhere. 
One set of grid lines (co-ordinate lines of the boundary-fitted co-ordinate system) should 
always coincide with the boundary of the spatial domain regardless of the geometric 
complexity or motion of that boundary (i.e. the grid system should be boundary-conform- 
ing). This condition is important because it enables FD and FV methods to implement 
boundary conditions easily and accurately for geometrically complex and/or deforming 
spatial domains. 
Grid lines that intersect a boundary should intersect that boundary perpendicularly so that 
derivative boundary conditions can be implemented more easily and accurately. At the 
interior of the spatial domain the angle of intersection between grid lines only needs to be 
nearly orthogonal (i.e. between 45" and 135"). 
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4. The spacings between grid points should change slowly from a region where grid points are 
concentrated to a region where grid points are sparsely distributed, especially in regions 
where gradients of the flow are large, This condition is important because Fourier 
components which make up the solution reflect and refract at interfaces where grid spacings 
change. 

5. One set of grid lines should align with the flow direction. This condition is important for 
convection-dominated flows when the aspect ratio of the control volume about each grid 
point is very high and/or when the thin layer Navier-Stokes equations are used to study 
such flows. 

For complicated 2D and 3D flows within geometrically complex spatial domains it is usually 
impossible to generate a single grid that would satisfy all of the above conditions at every part of 
the spatial domain. For such problems it is necessary to generate a number of different single 
grids, each of which satisfies the above five conditions at a different part of the spatial domain. 
These single grids are then patched together to form a composite grid, which as noted earlier 
can be completely discontinuous, partially discontinuous, partially continuous or completely 
continuous. 

Since complicated geometries invariably imply composite grids which can be generated by 
using GRID2D/3D, below we describe the advantages and disadvantages of the various types of 
composite grids in order to know when a specific type should be used for a given problem. 

Completely discontinuous composite (CDC) grids 

The major advantage of CDC grids such as the chimera grid'7-21 (Figure 2(a)) is that they are 
the easiest to generate, For example, to generate a chimera grid over the spatial domain about an 
aircraft, all one has to do is generate a series of single grids, one about each component of the 
aircraft (e.g. one about the fuselage, another about the wing, and so on). The patching process 
simply involves laying each single grid over the appropriate component of the aircraft, deciding 
on the amount of overlap of different single grids and ensuring that the entire spatial domain is 
filled with grid points. Since the geometry for each single grid can be made as simple as desired 
and patching is trivial, the grid generation process is straightforward. Another important 
advantage of CDC grids is that the structure of each single grid can be different from each other; 
e.g. one single grid may have a C-C structure while another may have an 0-0 or an 0-H 
structure. Thus it is possible to optimize each single grid for a different part of the spatial domain. 
Still another advantage is that this is the easiest grid on which to do local grid refinement. For a 
chimera grid one can refine the grid at any location by simply generating a very fine single grid 
and then overlaying it wherever desired. Also, this type of grid can easily be applied to problems 
in which one or more objects are moving relative to another object, such as the launching of 
missiles from an aircraft." Finally, since composite grids are composed of a series of single grids, 
it is possible to do computations on one single grid at a time. This will reduce computer memory 
requirements considerably since only information on one single grid needs to reside in the 
computer at any one time. This advantage is shared by all composite grids, continuous or 
discontinuous. 

The major disadvantage of CDC grids is that they are the most difficult to use in obtaining 
solutions when compared to other types of composite grids. This is because interpolation schemes 
are needed to transfer information from one single grid to another when and wherever two or 
more single grids overlap.'*-'' Also, schemes used should ensure that properties such as 
conservation and monotonicity are maintained in regions where two or more single grids overlap. 
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Finally, information is lost when transferred from a fine to a coarse grid; thus grid spacings of 
different single grids should be approximately equal in regions where they overlap. 

Partially discontinuous composite (PDC) grids 

PDC grids (Figure 2(b)) are generated in the following manner. First, the spatial domain of the 
problem being studied is partitioned into a number of non-overlapping, contiguous zones or 
blocks. Next, a single grid is generated within each zone. Finally, patching of the single grids 
simply involves putting each of the single grids into its respective zone. Thus PDC grids differ 
from CDC grids in that the single grids of PDC grids to not overlap each other. 

PDC and CDC grids have two important similarities. First, each single grid in both cases can 
have a structure that is different from each other. Secondly, the number of grid points in each 
single grid can be different from each other. Because of these two similarities, the major 
advantages of PDC grids are the same as those of the CDC grids. However, since single grids in a 
PDC grid do not overlap each other, PDC grids are somewhat more difficult to generate but are 
easier to use than CDC grids. The main difficulty in using PDC grids is implementing boundary 
conditions at interfaces where different single grids meet.” - 2 5  

Partially and completely continuous composite gri& 

Completely continuous composite (CCC) grids are grid systems in which all grid lines (i.e. co- 
ordinate lines of the boundary-fitted co-ordinate system) and all of their derivatives of every order 
are continuous at all interfaces where different single grids meet. In general, it is not necessary to 
construct CCC grids. Typically, FD and FV methods only require continuity of the grid lines and 
their first- and, occasionally, second-order derivatives at the interfaces where different single grids 
meet. Composite grid systems with this limited degree of continuity are referred to as partially 
continuous composite (PCC) grids. 

Figure 2(c) shows a PCC grid in which the grid lines are all continuous but their first-order 
derivatives have discontinuities. It can readily be seen in that figure that the slope of the grid lines 
and the spacing between the grid lines change suddenly at the interface where the two single grids 
meet. Figure 2(d) shows a PCC grid in which the grid lines and their first-order derivatives are 
continuous everywhere, including the interface where the two single grids meet. Such PCC grids 
have the same appearance as CCC grids. 

The major advantage of PCC grids of the type shown in Figure 2(d) is that this is the easiest 
grid system for FD and FV methods to use. This is because boundary conditions can be 
implemented easily at interfaces where different single grids meet. In fact it is not even necessary 
to treat the interfaces where different single grids meet as boundaries since computations can be 
carried across them. For PCC grids the complete spatial domain of the problem can be mapped 
onto a single transformed domain, even though different boundary-fitted co-ordinate systems 
have been used in different parts of the spatial domain (Figure 3). Here it is important to note that 
not all grid systems which appear to be continuous are continuous. Figure 4 shows a composite 
grid that appears to be continuous but belongs to the PDC grids because it is impossible to map 
the entire spatial domain onto one transformed domain. 

The major disadvantage of PCC grids is that they are the most difficult to generate when 
compared to CDC and PDC grids. Another disadvantage is that the structure and number of grid 
points in each single grid must satisfy certain compatibility conditions in order to ensure 
continuity. These compatibility conditions make it more difficult to optimize each single grid for a 
specific area. They also make it more difficult to do local grid refinement. 
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Figure 3. A continuous composite grid system made up of four single grids: (a) in x-y co-ordinate system; (b) in t-q 
co-ordinate system 

Figure 4. A partially discontinuous composite grid that appears like a partially or completely continuous composite grid 

Thus there are many spatial domains for which it is extremely difficult, if not impossible, to 
generate a PCC grid that is acceptable. However, when it is possible then the generation of such 
grids is worthwhile because of the ease with which they can be used. References 2 6 3 1  show a 
number of examples of how to construct PCC grids for complex-shaped 2D and 3D spatial 
domains. 
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GRID GENERATION METHODS 

All grid generation techniques are classified as either differential equation or algebraic methods. 
Differential equation methods generate grid systems by solving a system of partial differential 
equations (PDEs) which describes how grid points are to be distributed within the spatial 
domain. In general, these methods require a significant amount of computational effort since the 
systems of PDEs that must be solved are quasi-linear and often as complicated as the PDEs that 
govern the fluid flow problem. Algebraic methods generate grid systems by interpolating between 
boundaries of the spatial domain. Since no PDE needs to be solved in the grid generation process, 
algebraic grid generation methods are computationally much more efficient than differential 
equation methods. 

Whether one uses a differential equation or an algebraic method, the grid generation process is 
always iterative. This is because the ‘acceptable’ grid system is arrived at via trial and error after 
generating a series of unsatisfactory grids. The effort of the iterative process is, of course, 
compounded many times for spatial domains which can deform with time, since for such domains 
a different grid system is needed for each time level and the number of time levels can be 
thousands or more. Hence the efficiency of the grid generation process is extremely important for 
problems with 3D spatial domains and for problems in which the spatial domain can deform. 

Since GRID2D/3D is intended for complex-shaped 2D and 3D spatial domains and for spatial 
domains that can deform with time, GRID2D/3D generates grid systems by using algebraic grid 
generation methods. Depending upon the complexity and dimensionality of the spatial domain, 
GRID2D/3D iises one of the following three methods, all of which are very similar and are 
based on transfinite interp~lation:~’ -34 the two-boundary method,35* 36 the four-boundary 
method3’, 3 8  and the six-boundary method.38* 39 These methods were chosen because of their 
high efficiency and their ability to provide very precise controls over the distribution of grid 
points in the spatial domain when used in conjunction with stretching  function^.^'?^^ Also, these 
methods can generate grid lines that intersect boundaries orthogonally. 

By using these algebraic grid generation methods, GRID2D/3D generates single grids with grid 
lines that are continuous and differentiable everywhere up to the second order. GRID2D/3D 
generates composite grids by patching together two or more single grids. The patching can be 
discontinuous or continuous, For continuous composite grids the grid lines are continuous and 
differentiable everywhere up to the second order except at interfaces where different single grids 
meet. At interfaces where different single grids meet, the grid lines are only differentiable up to the 
first order. 

In order to use the two-, four- and six-boundary methods to generate grid systems, the 
boundaries of the spatial domains must be represented mathematically in parametric form. This 
is a difficult problem for complicated-shaped spatial domains because the boundaries of such 
domains are complicated as well. In GRID2D/3D, parametric equations for boundary curves of 
2D spatial domains are generated by either spline in te rpola t i~n~~ or tension spline inter- 
p0lation.4~ Parametric equations for boundary surfaces of 3D spatial domains can be generated 
by a number of techniques, including linear Coons’ interp~lation,~’ bidirectional spline 
interp~lat ion~~.  45 and bihyperbolic spline interp~lat ion.~~ In GRID2D/3D, parametric equa- 
tions for these 3D surfaces are generated by a new technique, developed in this study, referred to 
as 3D bidirectional Hermite interpolation. The details of the algebraic grid generation methods 
used in GRID2D/3D are described below. 

TWO-, FOUR- AND SIX-BOUNDARY METHODS 

As mentioned, GRID2D/3D generates grid systems by using either the two-, four- or six- 
boundary method. All three methods can generate grid systems in 3D spatial domains; the two- 
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and four-boundary methods can also generate grid systems in 2D spatial domains. In this section 
the details of these methods are described. Our step-by-step descriptions of the methods follow 
closely those of Yang and Shih.36 It is our intention to present the methods in a clear manner so 
that the reader might easily implement them. 

The two-boundary method 

36 is intended for problems in which it is only necessary to map 
correctly two arbitrary-shaped boundaries of the spatial domain. If the remaining boundaries are 
straight lines in the 2D case or flat surfaces in the 3D case, then all boundaries can be mapped 
correctly. Implementation of this method involves the following eight major steps? (1) define the 
nature of the co-ordinate transformation; (2) select a time-stretching function; (3) select two 
boundaries of the spatial domain that must be mapped correctly (these two boundaries cannot 
touch each other at any point); (4) describe the two boundaries selected in Step 3 in parametric 
form; (5) define curves that connect the two boundaries by using transfinite interpolation; 
(6) discretize the domain (i.e. replace the continuous domain of the problem by time levels and 
grid points); (7) control the distribution of the grid points with stretching functions; (8) calculate 
metric coefficients needed by the FD or FV method to obtain solutions. 

The details of these eight steps are described below by generating a single grid in the 3D, 
deforming spatial domain shown in Figure 5(a) for the problem of flow through a 
converging4iverging channel. The spatial domain of interest is the region bounded by surfaces 
1-6 in Figure 5(a), which deforms because surfaces 1 and 2 deform with time. 

The two-boundary 

surface 

Figure 5. Spatial domain: (a) in x-y-z-r co-ordinate system; (b) in t-q-c-~ co-ordinate system 
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Step I :  Define the co-ordinate transformation. The first step is to define the co-ordinate 
transformation between the co-ordinate system of the spatial domain and the boundary-fitted co- 
ordinate system of the transformed domain. For 3D spatial domains with moving grid points, the 
following co-ordinate transformation is sought: 

(x, Y, z,  t )++(t ,  v ,  r, (la) 

t = t ( t ) ,  x=x(t, ?, c, 21, Y = Y ( t ,  ?, r, 71, z=z(t ,  'I, c, z), ( W  

or, more specifically, 

where x, y ,  z and t represent the co-ordinate system of the 'physical' domain and 5, 'I, [ and t 
represent the boundary-fitted co-ordinate system of some transformed domain (Figures 5(a) 
and 5(b)). 

Step 2: Select a time-stretching function. The next step is to define a relationship between t 
and t. For our example we set t equal to z, i.e. 

t = z .  (2) 
Thus no time-stretching function is used. Time stretching may be useful when variable time-step 
sizes are used with FD or FV schemes that involve information at more than two time levels. 

Step 3: Select two boundaries of the spatial domain. The third step is to select the two 
boundaries of the spatial domain that are to be mapped correctly. These two boundaries must not 
intersect each other at any point. For the spatial domain of Figure 5(a) we select boundary 
surfaces 1 and 2. Since t, 'I, c and t represent a boundary-fitted co-ordinate system, boundary 
surfaces of the spatial domain in the x-y-z-t co-ordinate system must correspond to co-ordinate 
planes in the 5-q-C-z co-ordinate system. We choose surfaces 1 and 2 to correspond to co- 
ordinate planes v = 0 and 'I = 1 respectively (Figure 5), i.e. 

where Xi, Yi and Zi are the x-, y-  and z-co-ordinates of surface i, i =  1,2. The remaining four 
boundaries-surfaces 3,4,5 and 6-are mapped to co-ordinate planes t = 0, 5 = 1, c = 0 and 
t: = 1 respectively (Figure 5). 

Step 4: Describe the two boundaries selected in parametric form. Once the two boundaries have 
been selected, the next step is to represent these two boundaries in parametric form as suggested 
by the form of equations (3) and (4). Equations (3) and (4) also tell us that the three parameters 
which must be used to describe surfaces 1 and 2 are t, r and 7. In this example we assume that the 
parametric equations describing surfaces 1 and 2 are given and they are 

X, = t /L, ,  Y, = Asin(wt)[l -cos(2lct)][l -cos(2lcC)], 2, = r/Ly, (5) 

X2 = (/L,, Y2 = Ly-Asin(wz)[1-cos(2n~)][1-cos(2n~)], z2 = elLy3 (6) 
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where A, w, L,, L, and L, are given constants. If parametric equations are not given, then 
GRID2D/3D can generate them by using either spline or tension spline interpolation (see next 
section). 

Step 5: Define curves connecting boundaries using transJnite interpolation. A number of 
different transfinite interpolation techniques can be used to derive curves which connect the two 
boundaries chosen in Step 3. Here we consider two such methods: transfinite interpolations based 
on Lagrange and Hermite blending functions. 

When Lagrange interpolation (also known as linearly blended transfinite interpolation) is used 
to generate connecting curves between surfaces 1 and 2, the resulting curves have the following 
functional form: 

where Xi, Yi and Zi ( i  = lY2)  are given by equations ( 5 )  and (6). The functions I, and I, are 
blending functions which connect two points-one on each surface having the same t-, [- and 
.r-values. They are constrained by I, ( q  = 0) = 1, Il ( q  = 1) = 0, I,( q = 0) = 0 and I, ( q  = 1) = 1. 
With these constraints, I, and I ,  become 

I l ( t l )  = 1 - ‘1, Mtl) = tl- (8) 
Substitution of equation (8) in equation (7) yields the desired linear connecting curves: 

4 5 ,  ?, 5, T )  = Zl(& C, T ) ( l  - ?) + Zz(t, C, T ) V .  (9c) 
It is often desirable for connecting curves to intersect boundaries orthogonally so that 

derivative boundary conditions can be implemented accurately. Since one set of curves described 
by equation (9) are straight lines, they will not in general intersect boundaries orthogonally. One 
way to remedy this is to use transfinite interpolation based on Hermite interpolation to form the 
connecting curves. Hermite interpolation allows specification of derivatives at end points of 
curves, enabling one to force orthogonality at boundaries. When this method is used to generate 
connecting curves between surfaces 1 and 2, the resulting cubic curves have the following 
functional form: 

4 5 ,  V ,  Cy = L 7)h1(~) + xz(t, C, ~ ) h z ( q )  
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where Xi, Yi and Zi ( i  = 1,2) are given by equations (5 )  and (6). The functions h,, h,, h, and 
h, are blending functions which connect two points-one on each surface having the same 
t-, c- and r-values. They are constrained by hl(q = 0) = 1, h, (q  = 1) = 0, ahl(q = O)/aq = 0, 
ah,(? = i)/aq = 0, h,(q = 0) = 0, h,(q  = 1) = I, ah,(? = oyav = 0, ah2(? = iyaq = 0, 
h,(q = 0) = 0, ah,(? = oyaq = 1, h,(q = 0) = 0, 

h, = q 3  - q2. (11) 

We choose values for ax((, q = 0, c, ?)/aq, axg ,  q = 1, c, t)/aq, ayg, = 0, c, t)/aq, 
ay( <, 1 = 1, c, r)/aq, az( 5, q = 0, c, r)/aq and az( 5, q = 1, t, T)/aq so that connecting curves given 
by equation (10) will intersect surfaces 1 and 2 orthogonally. For surface 1 this will occur when the 
cross product of n (a vector normal to surface 1) and e, (the vector tangent to the connecting 
curve) is zero. This will be the case when 

h3(q  = I) = 0, ah,(q = iyaq = 0, 
h,(q = 1) = 0, ah,(? = O)/aq = 0, and ah4(q = l)/aq = 1. With these constraints, h, ,  h, ,  h ,  
and h, become35 

h ,  = 2+ - 312 + 1, h, = -2q3 + 3 q 2 ,  h, = ‘13 - 2r12 + ?, 

Similarly, the connecting curves will intersect surface 2 orthogonally when 

K , ( &  5, T) and K 2 ( &  c, T) in equations (12) and (13) are known as ‘K-factors’ and are chosen 
by trial and error so that no overlapping of the connecting curves takes place in the interior 
of the spatial domain. For our problem the ‘K-factors’ were set equal to a constant 
(i-e. Kl(t ,  c, d = w e ,  c, 7 )  = 0.2). 

The values of ax, ( 5 ,  c, z)/at, a Y ,  (t, c, z)/at, ax,( t, c, T)/a<, a Y2( t,[, r)/at ,  etc. in equations 
(12) and (13) can easily be found by analytically differentiating equations (5) and (6) or by using 
finite difference formulae. Thus substitution of equations (11) to (13) in equation (10) yields the 
desired cubic connecting curves based on Hermite interpolation. 

Sic? 6: Discreiize the domain. Steps 1-5 map the domain in the x-y-z-t co-ordinate system 
onto the t - p - r  co-ordinate system. Now we need to discretize the domain, i.e. replace the 
continuous domain by time levels and grid points. 

Here the time domain is replaced by equally incremented time levels, i.e. 

~ “ = n A z ,  n = 0 , 1 , 2  , . . . .  (14) 

In the above equation, T” denotes the time at time level n and Ar denotes the constant time step 
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Figure 6. Grid system: (a) in x-y-z-f co-ordinate system; (b) in <-tp[--7 co-ordinate system 

size. The spatial domain in the t-qx-~ co-ordinate system is replaced by IL x JL x K L  equally 
spaced grid points (Figure qb)). The locations of these grid points are given by the ordered triples 
( C 9 41 9 C k  1 defined by 

ti = ( i  - l)AC, V j  = ci - l)Aq, C k  = Ck - 1)AL (154 

1 
A t  = ~ 

I L -  1 ’  
1 

AC = ~ 

1 
A,, = ~ 

J L -  1 ’  K L -  1 ’  

where i = 1,2, . . . , IL, j = 1 ,2 ,  . . . , JL and k = 1 ,2 ,  . . . , KL. By substituting equation (15) in 
equation (lo),  we obtain the locations of the grid points in the x-y-z-t co-ordinate system 
(Figure 6(a)). 

Step 7: Control the distribution of gridpoints. At this point we need to examine the grid system 
shown in Figure 6(a) and ask: is the distribution of grid points satisfactory? In order to answer this 
question, we need to consider the physics of the problem for which the grid is generated. For 
accurate solutions, grid points should be clustered in regions of the spatial domain where sharp 
gradients in the dependent variables exist. Such clustering can be achieved by the use of stretching 
functions.40941 For flow within the 3D spatial domain shown in Figure 5(a) we expect steep 
gradients near walls (surfaces 1 , 2 , 3  and 4). Grid points can be clustered near surfaces 1 and 2 by 
replacing q in equation (10) by 

where B, is a constant greater than unity. More clustering takes place in the q-direction near q = 0 
and q = 1 as B,, approaches unity. In a similar manner, grid points can be clustered near surfaces 3 
and 4 by replacing < in equation (10) by 

where is a constant greater than unity that acts in the t-direction as p, does in the ?-direction. 
The new distribution of grid points in the x-y-z-t co-ordinate system after stretching is shown in 
Figure 7. 
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i 

Figure. 7. Grid system in the x-yz-t co-ordinate system after stretching 

Step 8: Calculate metric coeficients. Once we obtain a satisfactory distribution of grid points 
in the x-y-z-t co-ordinate system, we are ready to calculate metric coefficients. Metric coefficients 
appear in the governing equations when they are transformed from the co-ordinate system of the 
'physical' domain (x-y-z-t in our example) to the boundary-fitted co-ordinate system (5-q4-t). 
With the co-ordinate transformation described by equation (l), the metric coefficients which 
appear are T,, rr, qr, C,, r,, qx, l,, ry ,  qy ,  cy,  r,, qz and C,. These metric coefficients can be calcu- 
lated by the following expressions:2. 39 

7,  = 1, ( 18a) 

r, = (Y& - YCZ, , ) /J ,  (18b) 

r, = - CX?(Y,ZC - Y c Z J  - Y z ( X , Z c  - x g , )  + Z,(X,YC - X C Y , ) I / J ,  (184 

4, = - ( Y s . Z c  - Y , Z , ) / J ¶  ( 184 

?r = CX?(Ys.ZS. - Y c Z J  - Y A X C Z S .  - x p , )  + Z,(X,YC - X , Y , ) l / J ,  ( 18e) 

ex = ( Y p s  - Y , , Z c ) / J ,  (18f) 

ry  = - ( X , , Z c  - XcZ, , ) /J .  

t l y  = - ( X $ s  - x&/J, 

sy = - ( X c Z , ,  - X, ,ZC) /J ,  

r z  = (X, ,YC - XcY, , ) /JY 

4. = --(XSYC - X , Y , ) / J ,  

c z  = ( X t Y , ,  - X , Y , ) / J ,  

J = Xc(Y ,ZS .  - YCZ, )  - X,(Y,ZC - Y C Z O  + Xy(Ys.Z, ,  - Y S Z , ) .  ( 18h) 
The derivative terms x,, x,,, xC, yc ,  y,,, ye,  z,, z,, and ze in equation (18) can be evaluated either 
analytically by differentiating equation (10) or numerically by using finite difference formulae. 
The correct way to evaluate these derivatives depends upon how the governing equations written 
in the boundary-fitted co-ordinate system are cast. This important topic is addressed in 
References 47-50. The derivatives x, ,  y ,  and z, should be evaluated numerically. 

The four-boundary method 

The four-boundary method for generating grid points is intended for problems where four 
boundaries of a spatial domain need to be mapped correctly. This method3'* 38 is an extension of 
the two-boundary method and as such consists of the same eight major steps. The eight steps of 
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t 

Figure 8. Spatial domain: (a) in x-y-t co-ordinate system; (b) in t-q-z co-ordinate system 

this method are described below by generating a single grid inside the 2D, non-deforming spatial 
domain shown in Figure 8(a). 

Step 1: Define the co-ordinate transformation. For the 2D, non-deforming spatial domain 
shown in Figure 8(a) we seek a co-ordinate transformation of the form 

(x, Y, t )  tt ( 5 ,  ?, 7) (194 

t = t ( z ) ,  x = 4 5 ,  ?), Y = Y(5, ?I. ( 19b) 

or, more specifically, 

Step 2: Select a time-stretching function. Here t is set equal to z as shown by equation (2). 

Step 3: Select four boundaries of the spatial domain. Since the spatial domain of Figure 8(a) 
has only four boundaries, all four boundaries are selected. We choose curves 1, 2, 3 and 4 to 
correspond to co-ordinate lines q = 0, q = 1, 5 = 0 and 5 = 1 respectively (Figure 8), i.e. 

Xl = x(5, rl = 0) = XI(51, 

x, = 4 5 ,  v = 1) = X2(5), 
x, = 4 5  = 0, r l )  = X,(tl) ,  

x, = x(5 = 1, r l )  = X4(?)9 

y, = Y(5, rl = 0) = Y1(5), 

y, = Y(5,V = 1) = Y2(5)7 
Y’ = Y(5 = 0 9  q )  = Ydrl), 
Y4 = Y ( 5  = 1, v )  = Y4(?). 

(204 

(20b) 

(204 

(204 
Here Xi and Yi are the x- and y-co-ordinates of curve i, i = 1,2, 3,4. 

Step 4: Describe the four boundaries selected in parametric form. Having selected four bound- 
aries, we now need to represent these boundaries in parametric form as suggested by equation 
(20). Here tension spline4’ was used to obtain parametric equations for the four curves in terms of 
the parameter 5 for curves 1 and 2 and in terms of q for curves 3 and 4 (see next section). 

Step 5: Map the spatial domain. The four-boundary method maps the spatial domain to the 
transformed domain in two steps. The first step is essentially the same as Step 5 of the two- 
boundary method in which we select two of the four boundaries which do not touch each other 
and which have been described parametrically using the same parameter (either { or q).  As in Step 
5 of the two-boundary method, curves that connect these two boundaries are specified by using 
Hermite transfinite interpolation. When this step is completed, the two boundaries that were 
selected will be mapped correctly, but the other two boundaries will in general be mapped 
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incorrectly. To remedy this, a second step is performed where the mapping constructed during the 
first step is modified so that the other two boundaries will also be mapped correctly. 

Here we shall first define curves that connect curves 1 and 2 such that only curves 1 and 2 will 
be mapped correctly. Afterwards we will modify the connecting curves so that curves 3 and 4 will 
also be mapped correctly. Curves which connect curves 1 and 2 are described by the following 
Hermite interpolation expressions: 

where hl,  h,, h, and h4 are given by equation (11). The values of the partial derivatives in 
equation (21) will be given shortly. 

Equation (21) maps curves 1 and 2 correctly but not curves 3 and 4. In order to map curves 3 
and 4 correctly, equation (21) must be adjusted as shown below: 

4 5 ,  tl) = x’(5, tl) + Ax(<, tl), Y ( t ,  tl) = Y ’ ( 5 ,  ‘I) + AY(t9 tl). (22) 
Here 

where 
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h, = 2t3 - 35’ + 1, h, = -2t3 + 3r2, h, = C 3  - 2t’ + 5, h, = t3 - C’. (24) 

Substitution of equations (23) and (24) in equation (22) yields the desired expressions for x( 5, q )  
and y(t,q) which describe the mapping between the ‘physical’ domain and the transformed 
domain. 

We still need to specify the derivative terms in equations (21) and (23). Similar to the two- 
boundary method, the first-order derivative terms are chosen so that the connecting curves will 
intersect boundaries orthogonally. This time, however, the spatial domain is two-dimensional so 
that we must use the dot product instead of the cross product to specify orthogonality. 
Connecting curves will intersect curve 1 orthogonally when the dot product of ec (a vector tangent 
to curve 1) and e, (the vector tangent to the connecting curve) is zero, It can be shown that this 
will be the case when 

Following this line of reasoning, expressions for other first-order derivative terms in equations 
(21) and (23) are given below: 

Here K , ( t )  and K,(C) were chosen to be equal to 0-3, while K 3 ( q )  and K J q )  were chosen to be 
equal to 0.1. Methods for determining the second-order derivative terms present in equation (23) 
are given in Reference 40. In our example these terms were set equal to zero. 

Step 6: Discretize the domain. We discretize the domain in the t-q-r co-ordinate system by 
replacing the temporal domain with equally incremented time levels and by replacing the spatial 
domain with ZL x J L  equally spaced grid points (Figure 9(b)). The time levels are described by 
equation (14). The grid points are located at (ti, qj);  t i  and qj  are given by equation (15). By 
substituting equations (21), (23), (24), (25) and (26) in equation (22), we obtain the locations of the 
grid points in the x-y-t co-ordinate system (Figure 9(a)). 

Step 7: Control the distribution of gridpoints. In this example we choose not to use stretching 
functions to redistribute the grid points within the spatial domain. 

Step 8: Calculate metric coeficknts. For our 2D, non-deforming spatial domain the metric 
coefficients which need to be evaluated are z,, t,, q,, 5, and qy. These metric coefficients can be 
evaluated by using the following equations: 

= 1, t, = Y,/J, V X  = - Y.JJ, t y  = - XJJ, q y  = x</J, J = xc~q - x ,~ t -  (27) 
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+ y  

(b)  
( a )  

Figure 9. Grid system: (a) in x-y-t co-ordinate system; (b) in &q-r co-ordinate system 

As before, the partial derivative terms in equation (27) can be evaluated either analytically or 
numerically by using finite difference formulae depending upon how the governing equations 
written in the boundary-fitted co-ordinate system are cast. 

The six-boundary method 

The six-boundary method for generating grid points is intended for 3D spatial domains in 
which six boundaries of the spatial domain need to be mapped correctly. This method38. 39 is an 
extension of the two- and four-boundary methods; thus it consists of the same eight major steps. 
We shall illustrate the six-boundary method by generating a grid system within the deforming, 
spatial domain shown in Figure 10(a). Of the eight major steps involved, only Steps 3 and 5 will be 
described since the other steps are identical to those of the two- and four-boundary methods. 

Step 3: Select six boundaries of the spatial domain. Since the spatial domain of Figure lqa)  has 
only six boundaries, all six boundaries are selected. We choose surfaces 1, 2, 3, 4, 5 and 6 to 
correspond to co-ordinate planes q = 0, 11 = 1, 5 = 0, 5 = 1, r = 0 and [ = 1 respectively, i.e. 

XI = X(t ,  'I = 0, (9 t) = XI((, r, TI, 

x, = 4 5 ,  'I = 1, r ,  7 )  = X,(5, 5, z), 

x3 = 4 5  = 0, 'I, r, 7 )  = X,(% r, z), 

y, = Y(5, 'I = 0, r, r)  = YI(t, r, r), 
y2 = Y(59 'I = 1, (9 = Y2(5, r, z), 

y3 = Y(5 = 0, 'I, r, = Y3('I, c, TI, 

(284 

(28b) 

(284 

SURFACE 

5 

i 
SURFACE 2 

SURFACE 

SURFACE 

SURFACE 1 

S U R F K E  6 

5 

4 

--f 

(b) 
SLIRFAIEE 6 

(a) 

Figure 10. Spatial domain: (a) x-yz-t co-ordinate system; (b) in t-tl4-f co-ordinate system 
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x4 = 4 5  = 1, ?, 5, z) = X4(4 5, z), Y4 = ~ ( 5  = 1, ‘19 5, T) = Y4(?, 5, 71, (28d) 

x, = dt,  t l 5  5 = 0, T) = X , ( < ,  ?9 TI,  Ys = A<, tl, l = 0, T) = Ys(t, v ,  71, (284 

Here Xi and Yi are the x- and y-co-ordinates of surface i, i = 1,2,3,4,5,6. The z-co-ordinates of 
surfaces 1, 2, 3,4, 5 and 6 were omitted to shorten presentation. 

Step 5: Map the spatial domain. We map the ‘physical’ domain to a transformed domain in 
three steps. In the first step, correctly map two of the six boundaries by using the two-boundary 
method. In the second step, correct the mapping completed in the first step by ensuring two more 
boundaries are mapped correctly (same as Step 5 of the four-boundary method). Finally, in the 
third step, correct the mapping completed in the second step by ensuring the remaining two 
boundaries are mapped correctly. 

Surfaces 1 and 2 will be mapped correctly by the following Hermite interpolation expressions: 

x6 = x(<, ?, 5 = 1, t, = x6(<, ?, y6 = Y(<,  ‘1, 5 = l, 7 )  = y6(<, 7). (28f) 

X’(t9 t t 9 L  r )  = Xl(<, 5, r)h,(tl) + XAt, 5, r)h,(tl) 

Here h , ,  h,, h3 and h4 are given by equation (11). 
Surfaces 1,2,3 and 4 will be mapped correctly by the following equations: 

x”(t, tl, 5, = x’(t, tl, 5, 7 )  + Ax’((, ?, L 71, 

Y‘Yt, % c, .) = Y’(5, ?, 5 , T )  + AYYt, tl, 5, 71, 

where x’ and y’ are given by equation (29) and 

Ax’({, 4, r, 7 )  = CX3(?, 597) - x’(t = 0, ?, L r ) l h s ( t )  
+ cx4(?, 5, - x ~ t  = I,?, c, m 6 ( t )  

a y ( t  = 1, tt, c, 7 )  a y e  = 1, tl, c, - 
at 

In the above equations, h,, h,, h, and h, are given by equation (24). 
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All six surfaces of the spatial domain shown in Figure lqa)-namely surfaces 1, 2, 3, 4, 5 
and 6-will be mapped correctly by the following equations: 

where x” and y” are given by equation (30) and 

hg = 2c3 - 35’ + 1, h i ,  = - 2C3 + 3rz, h l l  = C3 - 2r2 + C, h12 = l3  - r2.  (34) 
Substitution of equations (29H31) in equation (32) yields the desired expressions for 

x( 5, q, r, z) and y (  5, q, c, z) which describe the mapping between the ‘physical’ domain and the 
transformed domain. We still need to specify the derivative terms in equations (29), (31) and (33). 
Similar to the two- and four-boundary methods, the first-order derivative terms are chosen so 
that connecting curves will intersect boundaries orthogonally. Here all second-order derivatives 
were set equal to zero. Here we note that an expression for z ( &  q, C, z) is also needed and can be 
derived in the same manner as x(  t, q, r, T )  and y(& q, C, 7). 

Additional remarks 

We conclude this section by mentioning three problems which must be dealt with when using 
the two-, four and six-boundary methods. 

First, slope discontinuities present in the boundaries of spatial domains propagate into the 
interior of the grid systems generated by using these methods. These discontinuities in the slopes 
of the grid lines are undesirable since they can lead to errors in the solution. To correct for this, 
some technique should be used to smooth the grid. One way to smooth a grid system with slope 
discontinuity is to apply a Laplacian operator to the region near the discontinuity, as will be 
shown later. 

Secondly, care must be taken when choosing the ‘K-factors’ and the stretching functions for the 
two-, four- and six-boundary methods. Large ‘K-factors’ tend to produce grid lines with more 
curvature. Such grid lines often overlap in the spatial domain or can at least form a grid system 
which is very skewed. In general, numerical values for the ‘K-factors’ and the stretching functions 
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connecting C U W I  c 

line t-nt t o  
curve c a t  point b 

line tangent to bandary d a t  point b 

Figure 11. Diagram showing how orthogonality of a connecting curve at a boundary does not guarantee orthogonality 
after the connecting curve has been replaced by grid points 

are arrived at in an iterative manner. A grid is first generated by using one set of inputs for the 
'K-factors' and the stretching functions. Next, that grid is plotted (GRIDZD/3D contains a 
graphics programme to plot grid systems that it generates) and inspected visually. On the basis 
of that inspection, the inputs are modified accordingly. This process repeats until a satisfactory 
grid has been obtained. Since GRID2D/3D is highly efficient, an acceptable grid system can be 
generated within a short time. 

Thirdly, when connecting curves are discretized to form grid points, the orthogonality which 
was forced at the boundaries may be lost. Figure 11 illustrates this point. Between grid points a 
and b, curve c is approximated by line segment a-b. The original 90" angle a between boundary d 
and curve c has been replaced by angle B between boundary d and line segment a-b. In order for j? 
to approximate a more closely, two things can be done. First, stretching functions can be used to 
move point a closer to point b. Secondly, larger 'K-factors' can be used to force the orthogonality 
further into the domain along curve c. In this way, orthogonality between the grid lines and the 
boundary curves can be maintained after the discretization of the spatial domain. 

METHODS FOR GENERATING PARAMETRIC REPRESENTATION OF 
BOUNDARIES 

In the previous section it was shown that in order to use the two-, four- and six-boundary 
methods, it is necessary to represent boundaries of the spatial domain in parametric form. These 
boundaries are curves for two-dimensional spatial domains and surfaces for three-dimensional 
ones. 

Parametric representation of curves and surfaces 

Curves and surfaces can be described mathematically in several different ways. For example, a 
curve in the x-y plane can be represented by y = f ( x )  orf( x, y) = 0. Alternatively we can describe 
the same curve parametrically in terms of a parameter s by x = g(s), y = f [ g ( s ) ]  = h(s). The 
choice of s is rather arbitrary, the only restriction being that s must increase monotonically along 
the curve. Here we note that all curves and surfaces can be represented by parametric equations 
and that there is no one unique way of representing a curve or surface in parametric form. 

In grid generation, information about a curve or surface is given either by an analytical 
expression or by a set of co-ordinates which describe the locations of a finite number of discrete 
points on the curve or surface. When information about a curve or surface is provided in the form 
of an analytical expression such as y = f ( x ) ,  it is a straightforward matter to generate a set of 
parametric equations for the curve or surface. When information about a curve or surface is given 
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by a finite number of discrete points, then some type of interpolation schemes must first be used to 
approximate the curve or surface by an analytical expression before it can be represented in 
parametric form. 

In GRID2D/3D, two interpolation schemes can be used to generate curves in 2D and 3D, 
namely cubic spline in t e rp~ la t ion~~  and tension spline interp~lat ion.~~ Tension spline inter- 
polation should be used whenever the curve to be approximated possesses extreme curvature. 
GRID2D/3D approximates 3D surfaces by using a new technique, developed in this study, 
referred to as 3D bidirectional Hermite interpolation. Here we only present the 3D bidirectional 
Hermite interpolation for generating 3D surfaces. 

Three-dimensional bidirectional Hermite interpolation 

It turns out that linear Coons’ interpolation (also known as transfinite bilinear interpolation) 
sometimes does not produce satisfactory surface approximations. Also, if a boundary surface is 
broken up into two or more subsurfaces with each subsurface generated by transfinite bilinear 
interpolation, then that boundary surface will have discontinuous first-order derivatives at all 
interfaces where different subsurfaces meet. Here a new technique for generating surfaces, referred 
to as 3D bidirectional Hermite interpolation, has been developed which is as efficient as linear 
Coons’ surface but does not have its shortcomings. 

To illustrate the 3D bidirectional Hermite interpolation, consider the boundary surface 
bounded by four twisted curves shown in Figure 12. Information about the four twisted curves 
may be given in analytical form, or they may be put into analytical form from co-ordinates of a set 
of discrete points located on the curves by using either cubic spline or tension spline interpolation. 
In either case we end up with parametric equations describing each of the curves in the following 
form: 

Xi = Xi(Si), Yi = Yi(Si), zi = Zi(Si), (35) 
where X i ,  Yi and Zi describe curve i, i = 1,2,3,4. The parameter si represents the approximate arc 
length along curve i. Recall that for the two-, four- and six-boundary methods, boundary surfaces 
in the spatial domain are mapped onto co-ordinate planes in the transformed domain. Here we 
map the boundary surface shown in Figure 12 onto the t-q co-ordinate plane located at l =  0 in 
which both 5 and 1 varied between zero and unity. Thus si in equation (35) must be related to 
either < or q, depending upon i. 

Figure 12 A boundary surface bounded by four twisted curves in the x-y-z-t co-ordinate system along with definitions 
of vectors tangent and orthogonal to curve 1 
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By using the four-boundary method with Hermite interpolants, we obtain 

(36i) 
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In the above equations, h,, h,, h3 and h4 are given by equation (11) and h,, h6, h, and h8 are given 
by equation (24). The method for evaluating the partial derivative terms appearing on the right- 
hand sides of equation (36) is described below. 

The first-order partial derivative terms in equation (36) determine the shape of the surface 
shown in Figure 12 bounded by the four twisted curves given by equation (35). These derivative 
terms also determine whether grid lines on that surface will intersect the four twisted curves 
orthogonally or not. Since the only information we have about the surface shown in Figure 12 is 
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the four twisted curves, these curves are used to derive expressions for the first-order derivative 
terms in equation (36). 

We shall illustrate how first-order derivative terms in equation (36) are calculated by deriving 
expressions for ax( 5, q = 0, = O)/aq, ay( 5, q = 0, = O)/aq and az( 5, q = 0, 5 = O)/aq. These 
three derivative terms are evaluated along curve 1 in which q = 0, ( = 0 and t varies between zero 
and unity. The method for deriving first-order derivative terms along the other three twisted 
curves (i.e. curves 2, 3 and 4 in Figure 12) will be similar to the procedure described below. 

Expressions for the first-order partial derivative terms along curve 1 are derived in five steps: 
(1) determine a vector which is perpendicular to the plane formed by the vectors tangent to curves 
1 and 3 at one end of curve 1; (2) determine a vector which is perpendicular to the plane formed by 
the vectors tangent to curves 1 and 4 at the other end of curve 1; (3) linearly interpolate between 
the two vectors determined in Steps 1 and 2 and denote this vector function as Nel; (4) determine 
a vector function that is parallel to the cross product of N,, and a vector function tangent to curve 
1 (the vector function thus determined is assumed to be tangent to the surface that we wish to 
approximate along curve 1); (5 )  determine first-order partial derivative terms along curve 1 by 
forcing the vector function formed by the first-order derivatives to be parallel to the vector 
function determined in Step 4. The details of these five steps are described below. 

Step 1: Determine normal vector at one end of curve 1 .  The vectors tangent to curves 1 and 3 at 
5 = 0 and q = 0 are given by 

ax,(? = 0) * + ay3(r = 0) + azdrl = 0) K, 
all all all 

Tq31 = 

where I, J and K are unit vectors pointing in the x-, y- and z-directions respectively. 
The vector perpendicular to the plane formed by the above two vectors is given by 

Step 2: Determine normal vector at other end of curve 1.  The vectors tangent to curves 1 and 4 
at 5 = 1 and q = 0 are given by 
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The vector perpendicular to the plane formed by the above two vectors is given by 

Step 3: Linearly interpolate between two normal vectors. In this step we linearly interpolate 
between the two normal vectors obtained in Steps 1 and 2 to produce the following vector 
function: 

N<l = (l - t )N13 + gN14, (41) 
where N,, and N14 are given by equations (38) and (40). 

Step 4: Determine a vector function tangent to the surface. Since there are an infinite number of 
surfaces that can pass through any given curve, a strategy must be developed to determine which 
surface is to approximate the surface shown in Figure 12. Here the surface selected is the one that 
will pass through curve 1 as well as curves 3 and 4. Thus the vector function tangent to the surface 
at curve 1 can be approximated by 

E,l = T,l x N,,, (42) 
where N,, is given by equation (41) and T,, is a vector function tangent to curve 1 given by 

Step 5: Determine expressions for first-order derivatives. Now that we know along which 
surface partial derivatives with respect to q at curve 1 can be made, we can derive expressions 
for the first-order partial derivative terms ax(& q = 0, 5 = O)/aq, ay(& q = 0, 5 = O)/aq and 
az( t ,  q = 0,C = O)/aq that appear in equation (36). Since we desire grid lines on the surface to be 
perpendicular to the boundary curve (curve 1 in this case), the vector function tangent to the ‘1- 
direction, T,, , must be parallel to the vector function E,, derived in Step 4. This can be expressed 
mathematically as 

T,, x E,, = 0, 

aY(t, ll = 0, r = 0) 
all all all 

(444 
where 

(44b) 
ax((, ?J = 0, C = 0) + Wt, ll = 0, r = 0) K. I +  T,l = 

The desired expressions for the first-order partial derivative terms are obtained from equation 
(44) in a manner very similar to the derivation of equation (12). Again, the ‘K-factors’ which 
appear in equation (12) can also be used here to ensure that grid lines do not overlap each other 
and to create a smoother surface. 
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GENERATION OF SINGLE AND COMPOSITE GRIDS 

In the previous sections the details of the algebraic grid generation methods used in GRID2D/3D 
have been described. In this section we demonstrate the usefulness of GRID2D/3D by using it to 
generate a number of single and composite grids within complex-shaped 2D and 3D spatial 
domains. Recall that a single grid is a grid system based on one boundary-fitted co-ordinate 
system and a composite grid is a grid system made up of two or more single grids patched 
together. 

Single gricis 

While illustrating the two-, four- and six-boundary methods, several single grids were gener- 
ated (Figures 6, 7 and 9). In this subsection we present a brief discussion on how to smooth 
discontinuities in grid systems that arise from boundary discontinuities. 

Figure 13(a) shows a 2D single grid around a sharp bend generated by using the two-boundary 
method. This figure illustrates how boundary discontinuities can propagate into the interior of 
the grid. The slope discontinuity of the ?-grid lines along i = I, can be eliminated by applying the 
following equations: 

~ 7 . f ’  = ~ ; , j + a ( ~ ; + , , j - - ~ ; . j + ~ l - i , j ) ,  (454 

x ; , y  = x ; , j +  . ( x ; + l , j - 2 x ; , j + x ; - , , j ) ,  (43-9 
where o! is a constant (I 05), i = I, - my . . . , I,, . . . , I ,  + m (m can be zero or some positive 
integer constant) and j = 2, 3, . . . , JL - 1. In order to smooth the grid shown in Figure 13(a), 
equation (45) needs to be applied a number of times, i.e. n = 0,1,2,3, . . . with n = 0 being the grid 
shown in Figure 13(a), n = 1 being the first correction, n = 2 being the second correction and so 
on. By using equation (45) repeatedly, the grid shown in Figure 13(a) was smoothed as shown in 
Figure 13(b). 

Composite grids 

GRID2D/3D can generate composite grids which are completely discontinuous, partially 
discontinuous and partially continuous (Figure 2). For completely or partially discontinuous 
composite grids such as those shown in Figures 2(a) and 2(b), each single grid within the 
composite grid can be different from any other in structure and in the number of grid points. Thus 
each single grid within such composite grids can be generated independently of the other single 
grids in the manner described in the section ‘Two-, four- and six-boundary methods’. How the 

t ’  

Figure 13. Spatial domain with a boundary discontinuity: (a) grid system generated by the two-boundary method, (b) grid 
system after smoothing 
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different single grids of such composite grids are patched together once they are generated is 
described in the section ‘Types of grid systems’. Since discontinuous composite grids can be 
generated rather easily and patching is trivial, no further discussions concerning them will be 
given. 

For partially continuous composite (PCC) grids, each single grid within them must satisfy a 
number of compatibility conditions so that when the different single grids are patched together 
the resultant composite grid will have some degree of continuity (see section ‘Types of grid 
systems’). PCC grids such as the one shown in Figure 2(d) are often difficult to generate. However, 
when it is possible to generate them, they are the easiest to use with FD and FV methods to 
obtain solutions to partial differential equations. Below we discuss how PCC grids can be 
generated. 

Partially continuous composite grids 

PCC grids are generated by GRID2D/3D in two major steps. The first step involves parti- 
tioning the spatial domain into zones. The second step involves constructing grid systems that 
will be continuous from one zone to another. These two steps are described in detail below. 

Partitioning. The first step in constructing a PCC grid is to partition the spatial domain of 
interest into a finite number of contiguous zones. The partitioning process involves answering 
three interrelated questions: (1) How should the spatial domain be partitioned into zones? 
(2) Based on that partition, what grid structure is to be used within each zone (e.g. C-C, C-H, 
0-H, . . .)? (3) Based on that partition and grid structure selections, how should the different 
zones be mapped to the transformed domain so that the resultant composite grid will have some 
degree of continuity? The answers to these questions depend on the geometry of the spatial 
domain and the physics of the problem for which the grid is being generated. For any given 
problem, several different choices are usually possible. However, for simplicity, the choice 
containing the least number of zones is often the most desirable. 

An example illustrating one strategy for partitioning is shown in Figure 3(a). The boundaries of 
that spatial domain contain a backward-facing step, a flat wall and a wedge-shaped obstacle. The 
fluid is flowing from left to right. In Figure 3 the spatial domain is partitioned by using free 
streamline theory. More specifically, a new zone is set up wherever separation is expected (e.g. at 
the backward step and at the rear of the wedge-shaped obstacle) or where a flow will separate into 
two streams (e.g. at the nose of the wedge-shaped obstacle). The structure of the grid within each 
zone in Figure 3(a) was chosen to be H-type. This structure aligns the main flow direction with the 
grid lines, which is important because it reduces dissipation error and permits the use of the thin 
layer Navier-Stokes equations. Also, this structure allows grid lines to be clustered near solid wall 
boundaries readily as well as allowing continuity of grid lines and their derivatives from one zone 
to another. Figure 3(b) shows how the different zones in Figure 3(a), each of which will have a 
different boundary-fitted co-ordinate system, are mapped onto the same transformed domain. 

As a second example, consider the 2D inlet of an aircraft engine shown in Figure 14(a). This 
geometry would be awkward to handle with a single grid owing to the separation of the internal 
flow from the external flow by the cowl. Figures 14(a) and (14b) show a partitioning of this spatial 
domain into two zones and the transformed domain to which it is mapped. Other configurations 
involving more than two zones are certainly possible, but more complicated configurations are 
unnecessary unless the physics of the flow dictates their use. 

Grid generation with patching. Once we have partitioned the spatial domain of interest into 
zones, we are ready to generate a grid for each zone. For partially continuous composite (PCC) 
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Figure 14. Inlet of a turbojet engine; (a) partitioning in the x-y-t co-ordinate system; (b) partitioning in the {-q-7 
co-ordinate system 

grids, the grid generated for each zone must be such that when they are patched together the 
resultant composite grid has some degree of continuity. It turns out that this requirement 
necessitates a few minor modifications in the two-, four- and six-boundary methods presented 
earlier. In this section these modifications are described in the framework of the two-boundary 
method by applying it to generate a PCC grid in the 2D inlet of the aircraft engine shown in 
Figure 14(a). 

Step 1: DeJne the co-ordinate transformation. We seek a co-ordinate transformation of the 
form given by equation (19). 

Step 2: Select a time-stretching function. t is set equal to t according to equation (2). 

Step 3: Select two boundaries of each zone. We choose curves 1 and 2 for zone 1 and curves 5 
and 6 for zone 2 (Figure 14). For each zone we map these two curves to co-ordinate lines q = qlow 
and q = qhieh respectively. Here qlow, qhigh, tlow and thigh are defined as the co-ordinate lines in the 
transformed domain which correspond to the boundaries of a zone. Thus for zone 1 we have 

(464 

(46b) 

Xl = X ( t ,  rl = t l l 0 W )  = X,(O, 

x2 = X(t3  q = qhigh) = x2(t), 
Yl = Y ( &  tl = %ow) = YI(0, 
y2 = Y(t9 tl = I?hiph) = y2(t)9 

where qlow = 0, tfhigh = 0.5 and Xi and Yi are the x- and y-co-ordinates of curve i. For zone 2 we 
have 

x, = x(t ,  v = now) = XS(0, 

x6 = x(<, q = qhigh) = x6(<)? 

ys = Y(5, v = %ow) = YS(0 ,  

y6 = Y ( t 9  tl = qhiph) = y6(t;)? 

(474 

(47b) 
where rjjOw = 0.5, qhieh = 1 and X i  and Yi are the x- and y-co-ordinates of curve i. The other two 
curves in each zone (curves 3 and 4 in zone 1 and curves 7 and 8 in zone 2) are mapped to co- 
ordinate lines t = tlOw and t = thi& in the transformed domain. For our example, tlow = 0 and 
(high = 1 for both zones 1 and 2. 

Step 4: Describe the two boundaries of each zone in parametric form. We now need to represent 
the four curves selected in Step 3 (two for each zone) in parametric form. Here tension spline 
interpolation4' is used. 

Step 5: Define curves that connect the two boundaries in each zone. x( 5, q) and y( 5, q) in each 
zone can be defined by performing two mappings. The first mapping is from (x, y) to (t', q') with 
the boundaries of both 5' and q' between zero and unity. The second mapping is from (r',  q') to 
(t, q )  with the boundaries of 5 between 5 = tlow and 5 = thigh and the boundaries of q between 
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Figure 15. Grid system in the x-y-t co-ordinate system after stretching 

q = vlOw and = qhigh. The first mapping can be accomplished by using the equations derived in 
the section ‘Two-, four- and six-boundary methods’ with 5 and q replaced by t’ and q’. The second 
mapping is given by 5 = tlow + (’(thigh - [low) and q = %ow + q’(?hi& - qlow)* 

Step 6: Discretize the domain. We discretize the domain in the (-11-2 co-ordinate system by 
replacing the temporal domain with equally incremented time levels and by replacing each zone 
of the spatial domain with equally spaced grid points (see equations (14) and (15)). 

Step 7: Control the distribution of grid points in each zone. For high-speed flows through the 
inlet we expect large velocity gradients next to all solid surfaces. Thus grid points need to be 
clustered near solid surfaces. With this in mind we use stretching functions to cluster grid points 
near curves 1 and 2 for zone 1 and near curve 5 for zone 2. The new distribution of grid points is 
shown in Figure 15. 

Here we make a few comments about the continuity of grid lines and grid spacings across zonal 
interfaces. In the above example, grid lines remained continuous along the portion of the zonal 
interface which does not represent a ‘physical’ boundary. This is a desirable situation since it 
simplifies the numerical algorithm which will be used to investigate the flow in the spatial domain. 
Proper alignment of grid lines at the zonal interface in this case is made possible by using an 
appropriate stretching function in each zone. Thus one should exercise care when constructing a 
grid to ensure that grid lines remain continuous across the sections of the zonal interfaces which 
touch each other in the spatial domain. For our example we also note that the grid spacing in the 
?-direction must not change too abruptly across the zonal interface. The grid spacing in the q- 
direction is defined as the distance between adjacent grid points along a grid line of constant (. As 
with grid alignment, proper grid spacing at the zonal interface depends upon using an appropri- 
ate stretching function in each zone. 

Step 8: Calculate metric coe#cients. For the spatial domain shown in Figure 14, the five 
metric coefficients which need to be evaluated are q, t,, q,, T,, and q,,. These metric coefficients 
can be determined by using equation (27). We note that one-sided differencing should be used 
when calculating partial derivative terms at grid points which lie along portions of the zonal 
interface which do not touch in the spatial domain. Central differencing can be used at the other 
grid point locations along the zonal interface. 
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